顺时百度负面信息处理公司

2017营销必读:5个核心点让品牌玩转PDB营销

浏览:/ 2017-06-04 03:16

 

  (原标题:2017 PDB营销必读:5个核心点让品牌玩转PDB营销)

  程序化购买在2016年得到了飞速的发展,尤其是PDB(定价定量购买)私有程序化购买的出现进一步加速了程序化营销的发展步伐。PDB私有程序化购买在消除程序化投放不确定性的同时,广告投放效果能够更好的被透明优化,将程序化交易的优势模式推向了一个新的高度。2016年,很多广告主都开始采用PDB私有程序化营销模式,经过2016年一年的实践,无论是在PDB投放和管理技术、媒体选择、流量退还和程序化投放预估等方面都积累了丰富的实战经验。

  2016年,AdMaster为众多知名品牌提供了PDB营销广告投放技术AdServing(即AdMaster SmartServing:帮助广告主实现透明自主控制的程序化广告投放控制和管理系统),并取得了广泛的客户认可。服务包括快消、汽车、金融、母婴、互联网电商、航空行业等众多知名品牌。

  经过2016年的成功探索和经验积累,2017年PDB私有程序化营销如何能够更高效的扬帆起航?为此,AdMaster总结了2017年PDB营销必读的5大核心点,带领你轻松玩转PDB营销。

  2017年PDB营销需要掌握的5大核心点:

  1- 提升TA%、频次优化及多方识别率是关键:

  在退量的OTV PDB营销模式中,由于优质DMP的接入,对媒体流量进一步通过人群性别、年龄、兴趣等方面进行筛选,将不符合要求的人群退回,通常是进一步优化iGRP&Reach的常规实现方法。利用这种方式确实可以实现良好的优化效果,但也存在着隐患。

  最大的隐患是PC端Cookie识别率的问题,这也是一个老生常谈的问题。由于各家对于Cookie使用、各自的生成和采集方法不同,因此需要事前持续的Cookie 匹配,才能实现媒体和Server、Server和DMP间ID的互相识别;越多方的参与,会越降低最终媒体到DMP的识别率,这对于TA的优选效率上有很大的影响。

  举个例子,一个PC端的项目,如果媒体到Server的Cookie识别率约为60%左右,Server到DMP的Cookie识别率也在60%,那相当于其实媒体中可被认识的流量仅36%,这就会造成大部分的流量是随机投放完成的。

  应对策略:

  在项目上线前,甚至在决定使用的供应商时,广告主和代理公司也需要关注供应商提供的Cookie识别率指标。Cookie匹配量级对各家媒体、Server、DMP来说,都是一个基本要求。供应商能够合理安排可匹配的流量、优化匹配对象分配,确保项目中媒体到DMP保持较高的 Cookie 识别率。

  虽然在移动端并不涉及各家识别率的问题,但也同样存在移动设备ID的通用性和稳定性等问题。目前移动端数据的流通性较低,仅少数DMP公司开放移动端的数据,更多的DMP公司基于数据安全问题,基本的解决策略都是由AdServing方提供数据。2017年,AdMaster将会积极投入更多的资源,推动拥有高质量数据源的巨头们,安全、有序地流通移动端数据,更好的激活各家移动端数据,帮助广告主更精准的寻找到品牌的TA。

  2- 媒体流量稳定性是PDB营销各项KPI提升的关键:

  PDB营销是一种通过程序化的形式实现更精准的投放控制、目标人群定向等媒介优化的购买方式,主要通过技术手段优化并提升如CTR,TA%等多项KPI,但除了技术驱动外,确保这些KPI指标能够提升的基础是媒体推送流量的质量和稳定性、优先级上需要至少需保持和常规购买一致。PDB项目最终效果中媒体的推送量质量是较为关键的影响因素。

  通常,媒体端流量质量和稳定性的评估可以从两个方面考量:

  a) 推送量中不稳定流量占比

  行业会把无法再现的流量、某些有异常行为的流量(如曝光前点击、瞬时多次行为等)称为不稳定的流量。当某些项目中如果不稳定流量过高时,首先DMP无法识别这些流量,无从判定性别年龄,这就影响了对于推送量的筛选。同时,不稳定的流量的Stable%也会低于常规,这对于最终计算iGRP&Reach也同样存在着影响。

  b) PDB优先级与常规是否一致

  通常PDB项目的效果优化都是基于同期或者之前一波常规项目表现上的提升,这要求了PDB项目的流量分布上应与常规项目差异不大。当某波项目,如果存在频次分布、性别年龄分布较大的差异,比如一波控5的项目,在超频还是低频的占比都是常规项目的表现好于PDB的推送,那可能最终由PDB优化后的项目结果仍低于常规项目。

  应对策略:

  A. 通过技术手段规避不稳定流量:在Server选择退量时,就考虑关于流量稳定性指标,最大化避免不稳定流量;

  B. Server方能够按照实时曝光的情况,更好的控制对于推送量的选择,优化退量逻辑;

  C. 设定媒体关于推送量质量和稳定性的KPI。

  3- 避免溢价过高,导致效果优化无法满足溢价,影响ROI的提升

上一篇:Master或是围棋史上最完美营销:谷歌围棋都赢了

下一篇:人民日报新媒体发布2016中国互联网10大现象